Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zi-Qiang Hu, Yong Ni and Guo-Qiao Lai*

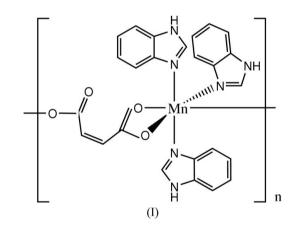
Key Laboratory of Organosilicon Chemistry and Materials Technology of the Education Ministry, Hangzhou Teachers College, People's Republic of China

Correspondence e-mail: guoqiaol@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.038 wR factor = 0.106 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


catena-Poly[[tris(1*H*-benzimidazole- κN^3)manganese(II)]- μ -maleato- $\kappa^2 O, O': \kappa O''$]

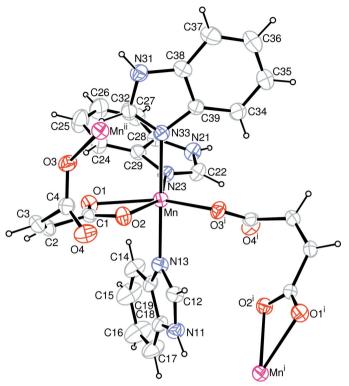
In the title compound, $[Mn(C_4H_2O_4)(C_7H_6N_2)_3]_n$, maleate dianions bridge neighbouring Mn^{II} ions to form helical polymeric chains. The Mn ion assumes a distorted octahedral coordination geometry, formed by two maleate and three benzimidazole ligands. One maleate carboxyl group chelates to the Mn atom with longer Mn-O bond distances while the other carboxyl group coordinates in a monodentate manner to the Mn atom.

Received 5 September 2005 Accepted 8 September 2005 Online 14 September 2005

Comment

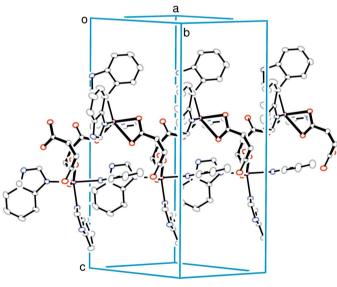
The chemical behaviour of manganese complexes has attracted much attention in terms of their catalytic activity in some industrial and biochemical processes (Kono & Fridovich, 1983; Wu *et al.*, 2001). As part of our ongoing investigation on polymerization reactions catalysed by variable valence manganese complexes, we present here the X-ray structure of the title Mn^{II} complex, (I).

The structure of (I) consists of polymeric complex chains (Fig. 1). The maleate dianions bridge neighbouring Mn^{II} ions through both carboxyl groups, one in a chelating mode and the other in a monodentate mode. The Mn–O bond distances involving the chelating carboxyl group $[O1-Mn-O2 = 55.76 (7)^{\circ}]$ are much longer than that involving the monodentate carboxyl group (Table 1). Three benzimidazole N atoms coordinate to the Mn atom to complete the distorted octahedral coordination geometry. The large N23–Mn–O3ⁱ angle of 117.82 (10)° [symmetry code: (i) $-\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$] indicates a significant degree of distortion.


The C1-carboxyl group of the maleate dianion is twisted with respect to the carbon backbone mean plane by $28.1 (3)^{\circ}$; the Mn ion bonded to the C1-carboxyl group is thus displaced from the backbone mean plane by a relatively small amount [0.145 (8) Å]. The maleate C3-carboxyl group is nearly

Acta Cryst. (2005). E61, m1975-m1977

© 2005 International Union of Crystallography


Printed in Great Britain - all rights reserved

metal-organic papers

Figure 1

A segment of the polymeric structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, 1 - z$; (ii) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$.]

Figure 2

The packing of (I), showing a fragment of the helical complex chain. H atoms have been omitted for clarity.

perpendicular to the carbon backbone [dihedral angle = $80.6 (2)^{\circ}$, resulting in the O3-bridged Mnⁱⁱ atom being out of the backbone mean plane by -1.318(8) Å [symmetry code: (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, 1 - z]. Overall, the maleate dianions bridge neighbouring Mn atoms to form a helical polymeric chain (Fig. 2), in agreement with the situation found in the isostructural Co^{II} analogue (Xue et al., 2003).

The crystal packing is stabilized by N-H···O hydrogen bonds between benzimidazole ligands and neighbouring carboxyl groups (Table 2).

Experimental

A hot aqueous solution (5 ml) of maleic acid (2 mmol) and Na₂CO₃ (2 mmol) was mixed with an aqueous solution (5 ml) of MnCl₂·2H₂O (2 mmol). The mixture was refluxed for 1 h, after which time an ethanol solution (5 ml) of benzimidazole (4 mmol) was added dropwise and the resulting mixture refluxed for another 3 h and filtered. Single crystals of (I) were obtained from the solution after 10 d.

Crystal data

$[Mn(C_4H_2O_4)(C_7H_6N_2)_3]$	Mo $K\alpha$ radiation
$M_r = 523.41$	Cell parameters from 17602
Orthorhombic, $P2_12_12_1$	reflections
a = 9.3455 (13) Å	$\theta = 2.4-25.0^{\circ}$
b = 12.2596 (13) Å	$\mu = 0.58 \text{ mm}^{-1}$
$c = 21.3592 (19) \text{\AA}$	T = 295 (2) K
V = 2447.2 (5) Å ³	Block, colourless
Z = 4	$0.29 \times 0.13 \times 0.10 \text{ mm}$
$D_x = 1.421 \text{ Mg m}^{-3}$	

Data collection

Rigaku R-AXIS RAPID

diffractometer (i) scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min}=0.838,\;T_{\rm max}=0.935$ 19932 measured reflections

Refinement

Refinement on F^2	w = 1/[
$R[F^2 > 2\sigma(F^2)] = 0.038$	when
$wR(F^2) = 0.106$	$(\Delta/\sigma)_{\rm m}$
S = 1.18	$\Delta \rho_{\rm max}$
4528 reflections	$\Delta \rho_{\min}$
325 parameters	Absolu
H-atom parameters constrained	1935
	T 1 1

4528 independent reflections 3945 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$ $\theta_{\rm max} = 25.5^{\circ}$ $h = -10 \rightarrow 11$ $k = -14 \rightarrow 14$ $l = -25 \rightarrow 25$

$w = 1/[\sigma^2(F_0^2) + (0.0618P)^2]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1935 Friedel Pairs
Flack parameter: 0.01 (2)

Table 1 Selected geometric parameters (Å, °).

Mn-O1	2.310 (2)	Mn-N13	2.221 (3)
Mn-O2	2.378 (2)	Mn-N23	2.217 (2)
Mn-O3 ⁱ	2.169 (2)	Mn-N33	2.261 (3)
C1-O1-Mn	92.84 (19)	C4-O3-Mn ⁱⁱ	119.5 (2)
C1-O2-Mn	90.02 (18)		
Symmetry codes: (i) x	$-\frac{1}{2}, -y + \frac{3}{2}, -z + 1;$	(ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$	

Table 2 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N11-H11···O3 ⁱⁱⁱ	0.86	2.04	2.855 (3)	158
$N21 - H21 \cdots O1^{iv}$	0.86	1.98	2.811 (4)	162
$N31 - H31 \cdots O4^{ii}$	0.86	2.06	2.850 (4)	152

Symmetry codes: (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) x - 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and were refined as riding, with $U_{iso}(H) =$ $1.2U_{eq}(\text{carrier}).$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by Zhejiang Provincial Natural Science Foundation of China (grant No. R203154).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kono, Y. & Fridovich, I. (1983). J. Biol. Chem. 258, 6015-6020.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New
- Trails Drive, The Woodlands, TX 77381-5209, USA. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wu, Z.-Y., Xu, D.-J. & Feng, Z.-X. (2001). Polyhedron, 20, 281-284.
- Xue, Y.-H., Xu, D.-J. & Gu, J.-M. (2003). Acta Cryst. C59, m387-m389.